5,476 research outputs found

    Universal properties of distorted Kerr-Newman black holes

    Full text link
    We discuss universal properties of axisymmetric and stationary configurations consisting of a central black hole and surrounding matter in Einstein-Maxwell theory. In particular, we find that certain physical equations and inequalities (involving angular momentum, electric charge and horizon area) are not restricted to the Kerr-Newman solution but can be generalized to the situation where the black hole is distorted by an arbitrary axisymmetric and stationary surrounding matter distribution.Comment: 7 page

    The interior of axisymmetric and stationary black holes: Numerical and analytical studies

    Get PDF
    We investigate the interior hyperbolic region of axisymmetric and stationary black holes surrounded by a matter distribution. First, we treat the corresponding initial value problem of the hyperbolic Einstein equations numerically in terms of a single-domain fully pseudo-spectral scheme. Thereafter, a rigorous mathematical approach is given, in which soliton methods are utilized to derive an explicit relation between the event horizon and an inner Cauchy horizon. This horizon arises as the boundary of the future domain of dependence of the event horizon. Our numerical studies provide strong evidence for the validity of the universal relation \Ap\Am = (8\pi J)^2 where \Ap and \Am are the areas of event and inner Cauchy horizon respectively, and JJ denotes the angular momentum. With our analytical considerations we are able to prove this relation rigorously.Comment: Proceedings of the Spanish Relativity Meeting ERE 2010, 10 pages, 5 figure

    Alleviation of the Fermion-sign problem by optimization of many-body wave functions

    Get PDF
    We present a simple, robust and highly efficient method for optimizing all parameters of many-body wave functions in quantum Monte Carlo calculations, applicable to continuum systems and lattice models. Based on a strong zero-variance principle, diagonalization of the Hamiltonian matrix in the space spanned by the wav e function and its derivatives determines the optimal parameters. It systematically reduces the fixed-node error, as demonstrated by the calculation of the binding energy of the small but challenging C2_2 molecule to the experimental accuracy of 0.02 eV

    Questioning the existence of a unique ground state structure for Si clusters

    Full text link
    Density functional and quantum Monte Carlo calculations challenge the existence of a unique ground state structure for certain Si clusters. For Si clusters with more than a dozen atoms the lowest ten isomers are close in energy and for some clusters entropic effects can change the energetic ordering of the configurations. Isotope pure configurations with rotational symmetry and symmetric configurations containing one additional isotope are disfavored by these effects. Comparisons with experiment are thus difficult since a mixture of configurations is to be expected at thermal equilibrium

    Quantum noise of non-ideal Sagnac speed meter interferometer with asymmetries

    Get PDF
    The speed meter concept has been identified as a technique that can potentially provide laser-interferometric measurements at a sensitivity level which surpasses the Standard Quantum Limit (SQL) over a broad frequency range. As with other sub-SQL measurement techniques, losses play a central role in speed meter interferometers and they ultimately determine the quantum noise limited sensitivity that can be achieved. So far in the literature, the quantum noise limited sensitivity has only been derived for lossless or lossy cases using certain approximations (for instance that the arm cavity round trip loss is small compared to the arm cavity mirror transmission). In this article we present a generalised, analytical treatment of losses in speed meters that allows accurate calculation of the quantum noise limited sensitivity of Sagnac speed meters with arm cavities. In addition, our analysis allows us to take into account potential imperfections in the interferometer such as an asymmetric beam splitter or differences of the reflectivities of the two arm cavity input mirrors. Finally,we use the examples of the proof-of-concept Sagnac speed meter currently under construction in Glasgow and a potential implementation of a Sagnac speed meter in the Einstein Telescope (ET) to illustrate how our findings affect Sagnac speed meters with meter- and kilometre-long baselines.Comment: 22 pages, 8 figures, 1 table, (minor corrections and changes made to text and figures in version 2

    Implicit self-consistent electrolyte model in plane-wave density-functional theory

    Full text link
    The ab-initio computational treatment of electrochemical systems requires an appropriate treatment of the solid/liquid interfaces. A fully quantum mechanical treatment of the interface is computationally demanding due to the large number of degrees of freedom involved. In this work, we describe a computationally efficient model where the electrode part of the interface is described at the density-functional theory (DFT) level, and the electrolyte part is represented through an implicit solvation model based on the Poisson-Boltzmann equation. We describe the implementation of the linearized Poisson-Boltzmann equation into the Vienna Ab-initio Simulation Package (VASP), a widely used DFT code, followed by validation and benchmarking of the method. To demonstrate the utility of the implicit electrolyte model, we apply it to study the surface energy of Cu crystal facets in an aqueous electrolyte as a function of applied electric potential. We show that the applied potential enables the control of the shape of nanocrystals from an octahedral to a truncated octahedral morphology with increasing potential

    Collisions of rigidly rotating disks of dust in General Relativity

    Get PDF
    We discuss inelastic collisions of two rotating disks by using the conservation laws for baryonic mass and angular momentum. In particular, we formulate conditions for the formation of a new disk after the collision and calculate the total energy loss to obtain upper limits for the emitted gravitational energy.Comment: 30 pages, 9 figure

    First phylogenetic analyses of galaxy evolution

    Full text link
    The Hubble tuning fork diagram, based on morphology, has always been the preferred scheme for classification of galaxies and is still the only one originally built from historical/evolutionary relationships. At the opposite, biologists have long taken into account the parenthood links of living entities for classification purposes. Assuming branching evolution of galaxies as a "descent with modification", we show that the concepts and tools of phylogenetic systematics widely used in biology can be heuristically transposed to the case of galaxies. This approach that we call "astrocladistics" has been first applied to Dwarf Galaxies of the Local Group and provides the first evolutionary galaxy tree. The cladogram is sufficiently solid to support the existence of a hierarchical organization in the diversity of galaxies, making it possible to track ancestral types of galaxies. We also find that morphology is a summary of more fundamental properties. Astrocladistics applied to cosmology simulated galaxies can, unsurprisingly, reconstruct the correct "genealogy". It reveals evolutionary lineages, divergences from common ancestors, character evolution behaviours and shows how mergers organize galaxy diversity. Application to real normal galaxies is in progress. Astrocladistics opens a new way to analyse galaxy evolution and a path towards a new systematics of galaxies
    • …
    corecore